

LiFePO4 lithium ion battery

Product Specification

Product Name: LFP Li-ion battery cell

Model: <u>3.2V105Ah</u>

MINRUA POWER CO., LIMITED

A407 ROOM, WANHUA CENTER, NO.113 ZHONGLING STREET, HULI DISTRICT XIAMEN, 361000, CHINA Website: <u>www.modern-battery.com</u> Email: sales@modern-battery.com

©MINRUA POWER CO.,LIMITED All rights reserved.

Contents

1	Scope	3			
2	Model	3			
3	Nominal Technical Parameter				
4	Test Conditions				
5	Battery Performance				
6	Transportation				
7	Storage	6			
8	Attentions	6			
Ap	pendix 1: Two-dimensional Diagram	7			
Ap	pendix 2: Code Rules	8			
Ap	pendix 3: Appearance Photos	8			
Ap	pendix 4: Packing Diagram	9			
Ap	pendix 5: Electrical Performance Diagram	9			

1 Scope

This specification describes product type, basic performances, test method and precautions of the prismatic aluminum-clad LiFePO₄ lithium ion battery produced by MINRUA POWER CO.,LIMITED The product can be applied to vehicle power system and energy storage system.

2 Model

2.1 Product Name: Prismatic Aluminum-clad LiFePO₄ Lithium Ion Battery

2.2 Product Model: 3.2V105Ah

3 Nominal Technical Parameter

No.	Ite	m	Parameter	Remark	
1	Nominal	capacity	105Ah		
2	Nominal voltage		3.2V	(25±2)°C, Standard charge/discharge.	
3	AC Impedance re	esistance (1KHz)	≤0.5mΩ		
4	Standard	Current of charge/discharge	0.5C/0.5C	(25±2)°C	
+	charge/discharge	Cut-off voltage of charge/discharge	3.65V/2.5V		
	Maximum current of charge/discharge	Constant charge/discharge	1C/1C	Refer to constant/pulse charge or discharge MAP	
5		Pulse charge/discharge (30s)	1C/3C		
6	Recommend S	SOC window	10%~90%	N.A.	
7	Charge ter	nperature	0°C~55°C	Refer to constant/pulse charge	
8	Discharge temperature		-20°C~55°C	or discharge MAP	
9	Storage temperature	1 month	-20°C~45°C	N.A.	
9		1 year	0°C~35°C		
10	Storage humidity		<95%		

No.]	ltem	Parameter	Remark
11	Self-discharg	ge rate per month	≤3%/per month	(25±2)°C, 30%~50%SOC storage
12		Width	130.3±0.3mm	
13		Thickness (30%-40%SOC)	36.7±0.5mm	
14	Size	Height (total)	200.5±0.5mm	Refer to appendix 1
15		Height (subject)	195.5±0.5mm	
16		Tabs distance	67.0±1.0mm	
17	Weight		1980±100g	

4 Test Conditions

4.1 Test Environment

Temperature: (25±2)℃

Relative humidity: $15\% \sim 90\%$

Atmospheric pressure: 86KPa~106KPa

4.2 Standard Charge

At $(25\pm2)^{\circ}$ C, the cell is charged by a constant current of 0.5C (A) to the cut-off voltage 3.65V, then kept at this voltage untill the current is less than 0.05C (A).

4.3 Standard Discharge

At (25±2)°C, the cell is discharged by a constant current of 0.5C (A) to the cut-off voltage 2.5V.

5 Battery Performance

5.1 Electrical Performance

No.	Item	Requirements	Measuring Procedure	
1	Rate dischargeability at 25°C	Discharge capacity / Nominal capacity×100% A) 0.5C(A)≥100% B) 1.0C(A) ≥100%	After standard charged, the cell undergo a rest for 1h, then is diacharged by current $0.5C(A)$, $1.0C(A)$ respectively to cut-off voltage 2.5V. This test is allowed to be repeated for 3 times if the discharge capacity fails to meet the technical requirements.	
2	Dischargeability at different temperature	Discharge capacity / Nominal capacity×100% A) 55°C ≥95% B) -20°C ≥70%	A) After standard charged, the cell undergo a rest for 5h at (55±2)°C, then is diacharged by current 1.0C(A) to cut-off voltage 2.5V; B) After standard charged, the cell undergo a rest for 24h at (-20±2)°C, then is diacharged by current 1.0C(A) to cut-off voltage 2.0V.	
3	Charge retention and recovery at 25°C	residual capacity ≥ nominal capacity ×95% Recovered capacity ≥nominal capacity ×97%	After standard charged, the cell undergo a rest for 28 days, then is diacharged by current 1.0C(A) to cut-off voltage 2.5V. The discharge capacity is called residual capacity. After standard charged again, the cell undergo 30min's rest, then is diacharged by current 1.0C(A) to cut-off voltage 2.5V. The discharge capacity is called recovered capacity.	
4	Cycle life at 25°C	≥3500 cycle @1C/1C	At $(25\pm2)^{\circ}$ C, 300kgf clamp force: the cell is charged by current 1.0C (A) to 3.65V, then kept at this voltage until the current is less than 0.05 C(A), followed by 30min rest, subsequently the cell is diacharged by current 1.0C (A) to 2.5V. Cycle continues until the capacity decays to 80% of the nominal capacity	
6	End-of-life management	Discharge capacity / Nominal capacity <70%	The cell shall be stopped using when the life limit is exceeded.	

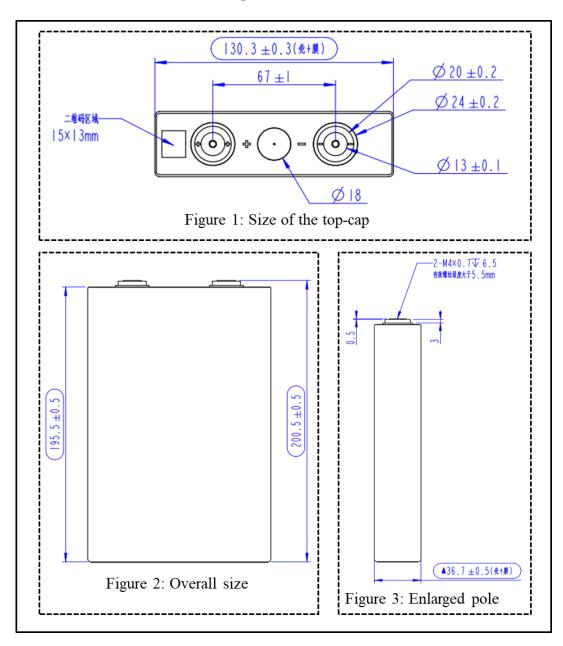
5.2 Safety Performance

No.	Item	Requirements	Measuring Procedure
1	Overdischarge	No fire、explosion、electrolyte leakage	
2	Overcharge	No fire vexplosion	Reference: GB/T 31485-2015 《 safety requirements and test methods for power batteries for electric vehicles》
3	Shortcircuit	No fire vexplosion	
4	Dropping	No fire, explosion, electrolyte leakage	
5	Heating	No fire vexplosion	
6	Crushing	No fire, explosion	
7	Prisking		
8	Seawater immersion	No fire cxplosion	
9	Temperature cycle	No fire、explosion、electrolyte leakage	
10	Low pressure	No fire, explosion, electrolyte leakage	

6 Transportation

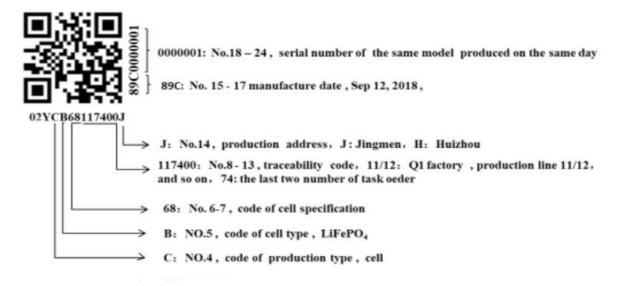
The cells should be packed into boxes under the charge of $30\% \sim 50\%$ SOC. During the transportation, they should be protected from severe vibration, shock, extrusion, sun or rain.

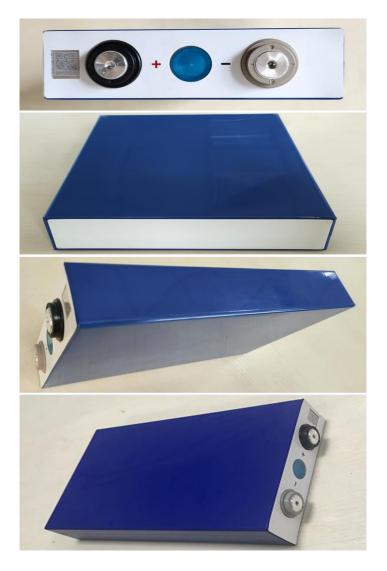
7 Storage


Cells should be stored (more than 1 month) indoor with a dry and clean environment at 0 °C~35 °C, and charged and discharged every 6 months. Keep the last charge under $30\% \sim 50\%$ SOC.

8 Attentions

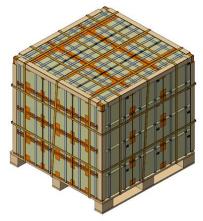
- It is necessary to ensure that the voltage, current and temperature of the cell are monitored and protected when the cell is charged and discharged.
- Please keep the cell away from heat source, fire source, strong acid, strong alkali and other corrosive environment.
- 3. Do not short connect or install the battery with incorrect polarity at any time.


- 4. Do not mix up with cells from different models or manufacturers.
- 5. Do not use external force to make the cell fall, impact, puncture, do not disassemble the cell or change the external structure.
- 6. Please keep the cell's charge under 30% ~ 50% SOC, and avoid direct sunlight or high temperature and humidity environment when the battery is not used for a long time,
- 7. Please wear protective devices such as rubber gloves when operating the battery.
- 8. Please immediately stop using if there have leakage, smoking or damage with cell, and contact our company to deal with.

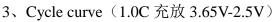

Appendix 1: Two-dimensional Diagram

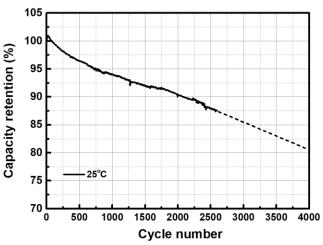
Appendix 2: Code Rules

Appendix 3: Appearance Photos

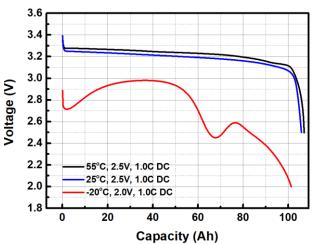


Appendix 4: Packing Diagram


length*width*height: 420*343*255mm



length*width*height: 1300*1100*1140mm


Appendix 5: Electrical Performance Diagram

1 Rate discharge curve at 25°C 3.6 3.4 3.2 Voltage (V) 3.0 2.8 0.5C DC 1.0C DC 2.6 2.4 20 40 60 80 100 0 Capacity (Ah)

2. Discharge curves at different temperature

